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Abstract
Aim: Lepidoptera is a highly diverse, predominantly herbivorous insect order, with 
species transported to outside their native range largely facilitated by the global trade 
of plants and plant- based goods. Analogous to island disharmony, we examine inva-
sion disharmony, where species filtering during invasions increases systematic com-
positional differences between native and non- native species assemblages, and test 
whether some families are more successful at establishing in non- native regions than 
others.
Location: Hawaii, North America, Galapagos, Europe, South Africa, South Korea, 
Japan, Nansei Islands, Ogasawara Islands, Australia, New Zealand.
Taxon: Lepidoptera.
Methods: We compared numbers of non- native, unintentionally introduced 
Lepidoptera species with the land area of 11 regions worldwide. Differences among 
native and non- native assemblages in the distribution of species among families were 
investigated using ordination analysis. We tested whether invasion disharmony is ex-
plained by propagule pressure (proxied by species richness in border interceptions) 
and if families were associated with specific trade commodities.

© 2022 Her Majesty the Queen in Right of Canada. Journal of Biogeography © 2022 John Wiley & Sons Ltd. Reproduced with the permission of the Minister of 
Natural Resources.

Strapline: Analysis of historical invasions showed that micromoths are generally more successful at establishment, and that invasion disharmony in Lepidoptera is little affected by 
geography, but rather driven by differential invasion pathways and traits.  
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1  |  INTRODUC TION

Insects are by far the most diverse group of animals, and of eu-
karyotes in general. The over one million described insect species 
amount to 60% of all known animals (Zhang, 2013), and with an 
estimated 5.5 million total insect species, this percentage might be 
as high as 90% (Stork, 2018). Among insects, the order Lepidoptera 
(moths and butterflies) is one of the four largest groups. More than 
157,000 species have been described (van Nieukerken et al., 2011), 
and an actual number of up to 500,000 species appears reasonable 
(Gaston, 1991). The majority of Lepidoptera larvae feed on various 
parts of plants, making this order one of the largest evolutionary radi-
ations of herbivorous animals (Grimaldi & Engel, 2005). Lepidoptera 
also comprise numerous pest species of economic importance to 
agriculture and forestry. Notable pests include the polyphagous 
spongy moth, Lymantria dispar, on various deciduous and coniferous 
trees (Wu et al., 2020), Ostrinia corn borers and Helicoverpa zea on 
maize (Nafus & Schreiner, 1991; Olmstead et al., 2016), the box tree 
moth, Cydalima perspectalis, on Buxus trees (Bras et al., 2019), Chilo 
and Scirpophaga stem borers as well as Cnaphalocrocis/Marasmia leaf- 
folders on rice (Bleszynski, 1970; Bradley, 1981; Lewvanich, 1981), 
and the tomato leaf miner Tuta absoluta on tomatoes (Desneux 
et al., 2010). The larvae of several groups of Lepidoptera, such 
as Tineidae, Oecophoridae, Cosmopterigidae, Pyralidae and 
Gelechiidae, feed on detritus and fungi, or on dry plant products 
such as grains, and can thus become serious pests of stored foods. 

With the global trade of plants and plant- based goods, Lepidoptera 
feeding on these products are inadvertently transported (Liebhold 
et al., 2012), but some species may move via other, traditionally less 
well- inspected pathways such as in sea containers or with machinery 
(Toy & Newfield, 2010).

Lepidoptera appear to not establish equally well in different non- 
native regions, and this difference in species richness of non- native 
moths and butterflies may be linked to differences in land area 
among invaded ranges. Previous work on numerous plant and ani-
mal taxa in different world regions (e.g. Blackburn et al., 2016; Sax & 
Gaines, 2006) has shown that numbers of non- natives follow a clas-
sic species– area relationship, that is, a log– log linear pattern between 
numbers of species and the area they inhabit (Lomolino, 2000). 
Furthermore, several studies have noted that within most animal 
and plant groups there are certain taxa that are systematically over-  
or under- represented in the flora and fauna found on oceanic islands 
compared to mainland source regions. This phenomenon, referred 
to as ‘island disharmony’ (Carlquist, 1965), is thought to result from 
selective assembly mechanisms, such as filtering based on dispersal 
capacity, permitting only a subset of mainland species to success-
fully colonise islands (Gillespie & Roderick, 2002; König et al., 2020). 
Much like island disharmony, an analogous filtering of species may 
occur during biological invasions, producing systematic compo-
sitional differences between native and non- native assemblages. 
However, observation of such ‘invasion disharmony’ has largely been 
limited to family- level composition between native and non- native 

Results: In total, 741 non- native Lepidoptera species, accounting for 0.47% of the 
global diversity of lepidopterans, are established in at least one of the 11 regions. 
Crambidae, Pyralidae, Tineidae and Gracillariidae were particularly successful invad-
ers, whereas the two most species- rich families, Erebidae and Geometridae, were 
under- represented among non- native Lepidoptera. Much of the variation in species 
numbers in the native, and less so in the non- native assemblages could be attrib-
uted to land area. Although native assemblages were similar among nearby regions, 
non- native assemblages were not, suggesting geography had little effect on invasion 
disharmony. Comparison of established with intercepted species revealed that mac-
romoth families were generally under- represented in establishments, whereas several 
micromoth families were under- represented in interceptions. This discrepancy may 
relate to greater detectability of larger species or high propagule pressure via associa-
tions with specific invasion pathways.
Main conclusions: Invasion disharmony in Lepidoptera appears to be driven by pro-
cesses unrelated to the success of native assemblages. While native assemblages 
developed through long- term evolutionary radiation, the composition of non- native 
assemblages is driven by differential invasion pathways and traits affecting the estab-
lishment of founder populations that vary among families.

K E Y W O R D S
biological invasions, border interceptions, commodities, establishment, international trade, 
invasion disharmony, non- native region, propagule pressure



    |  3MALLY et al.

plant assemblages (Procheş et al., 2008; Pyšek, 1998; but see, 
e.g., Blackburn & Duncan, 2001; Dugdale, 1988), though Liebhold 
et al. (2021) recently reported such a pattern for beetle (Coleoptera) 
family- level composition.

Observed patterns of invasion disharmony are likely the result of 
taxon- specific traits that influence either propagule pressure (rate of 
species transport to the non- native region) or invasiveness (proba-
bility of establishment following introduction; Liebhold et al., 2021). 
Unfortunately, differentiating between these two mechanisms can be 
challenging since it is typically impossible to directly measure either. 
However, measurements of species richness in interceptions during 
port inspections may serve as a proxy for propagule pressure. Even 
though species richness in interceptions may be influenced by a vari-
ety of factors other than propagule pressure, it is still strongly related 
to arrival rates and statistically related to historical establishments 
(Brockerhoff et al., 2014; Turner et al., 2020). Furthermore, comparing 
interceptions with establishments may indirectly allow for comparison 
of the invasiveness among groups of species (Colautti et al., 2006).

Knowledge of which Lepidoptera families have a higher probability 
of establishment would be useful in predicting invasion risk for specific, 
potentially damaging species. This predictive knowledge and informa-
tion about associations of various Lepidoptera groups with different 
import commodities could be used to prioritise biosecurity efforts. 
The objectives of this study thus are to (1) identify Lepidoptera fami-
lies that are the most successful at establishing in non- native regions, 
(2) investigate to what degree land area accounts for the diversity of 
established non- native species among regions, (3) investigate dishar-
monies between established and native species for 11 world regions, 
(4) determine whether observed invasion disharmony can be explained 
by differential propagule pressure (as proxied by intercepted species 
richness during port inspections), and (5) investigate the associations of 
various Lepidoptera groups with specific classes of trade commodities 
transported in international trade and travel.

2  |  MATERIAL S AND METHODS

2.1  |  Compilation of species lists

We assembled the lists of native and non- native established 
Lepidoptera species from 11 different regions worldwide for which 
comprehensive data on native and introduced Lepidoptera species 
exist. These 11 regions are as follows: North America (Canada, con-
tinental USA), the Hawaiian Archipelago, the Galapagos Archipelago, 
Europe (including its major islands and the European part of Russia), 
South Africa, South Korea, Japan (excluding the following two regions), 
the Nansei Islands, the Ogasawara Islands, Australia and New Zealand 
(Appendix S1). We acknowledge that these regions mostly coincide 
with countries with highly developed economies. It was only from 
these regions that we could practically obtain comprehensive lists of 
established non- native species. The comprehensive species lists (see 
references in Appendix S1) had largely already been published, and 
we made efforts to update them and correct errors. A list of names 

of these non- native species per region is given in Appendix S5. These 
data form part of a larger database, ‘International Non- native Insect 
Establishment Data’, that is periodically updated and freely available 
(Turner, Blake, & Liebhold, 2021). We recognise that these lists of non- 
native species may be incomplete, as there typically are lags between 
establishment, discovery and reporting of new non- native species (Essl 
et al., 2010; Morimoto et al., 2019).

Taxonomic delimitation of Lepidoptera families and total spe-
cies numbers per family follows van Nieukerken et al. (2011), Zahiri 
et al. (2011, 2012, 2013), Kaila et al. (2013), Kaila et al. (2020), Sohn 
et al. (2013), Heikkilä et al. (2014), Regier et al. (2014, 2015) and 
Kristensen et al. (2015). We kept the polyphyletic Batrachedridae 
(Heikkilä et al., 2014) in the circumscription of van Nieukerken 
et al. (2011). Chrysodeixis chalcites and Ch. eriosoma (Noctuidae) are in-
distinguishable in morphology and DNA Barcode sequence and were 
thus treated as one species, as their status as separate species is cur-
rently not resolved. Species lists from each region were standardised 
to overcome duplication through synonyms and misspellings, by per-
forming taxonomic ‘cleaning’ so that all species names and higher- level 
taxon designations were based on a single taxonomic classification sys-
tem (Supplement S1: Figure S4). This was performed using the GBIF 
taxonomic database (GBIF Secretariat, 2019) and the ‘taxize’ version 2 
package in R (Chamberlain & Szöcs, 2013). Code used for this taxonomic 
cleaning is available in the Zenodo repository (Blake & Turner, 2021). 
Though most user- supplied Lepidoptera species names were rec-
ognised (including as synonyms or misspellings) in the GBIF backbone 
taxonomy, a small number were not, and standardisation was performed 
manually via searches of alternative databases (Beccaloni et al., 2003; 
De Prins & De Prins, 2006– 2022, 2011– 2022; Gilligan et al., 2018; Nuss 
et al., 2003– 2022) and manual online researching of names.

Comparison of native and non- native established species as-
semblages was done at the family level by summarising the num-
ber of non- native and total species for each Lepidoptera family 
present in each region. Species known to have been intentionally 
introduced (e.g. biological control agents) were excluded from our 
analyses, as we were interested in patterns that result from acci-
dental invasion processes (but see Appendix S10 for the results 
of non- native established species including intentionally intro-
duced species). The numbers of intentionally introduced species 
per family and region are given in Appendix S4; they are also in-
cluded in Appendix S5 and marked in the column ‘intentional_re-
lease’ with ‘yes’. Numbers of native species per family and region 
were calculated by subtracting from the total number of species 
(Appendix S2) the number of non- native established species 
(Appendix S3) as well as the intentionally introduced non- native 
species (Appendix S4). To limit the stochastic effects of species- 
poor families, we restricted our analyses to families with at least 
10 non- native species present among the 11 regions. Exceptions 
were the analyses on the proportional representation of families 
in establishments and interceptions (see 2.3 and 2.5), where all 
families containing established non- native species were included, 
as the underlying binomial model takes into account the stochastic 
behaviour expected by smaller families. To illustrate differences in 
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numbers of native or non- native species among the 11 regions, a 
cluster heatmap was generated.

2.2  |  Species– area relationships

To analyse the influence of the different land area of regions 
on species richness, we plotted log numbers of species per 
regional assemblage against log regional land area (species– area 
relationships), with slope and R2 calculated for the linear regression 
relating log species numbers to log land area. This log– log linear 
relationship is a standard approach used for explaining geographical 
variation in biological diversity (Lomolino, 2000). Species– area 
plots were generated for the total number of native and non- native 
Lepidoptera species from each region. The same was done for the 
two families with the most non- native species among the 11 regions.

2.3  |  Scatterplots for proportional 
representation of families

For each of the 11 regions, we compared observed and expected num-
bers of non- native with numbers of native species per family in that 
region. The expected number of species per family was calculated as-
suming an equivalent proportion of species in each family in the na-
tive species assemblage. To illustrate variation in invasion disharmony 
among regions, we generated scatterplots of numbers of non- native 
species per family against numbers of species in the same family for 
the native assemblage for each of the 11 regions. The scatterplots in-
clude a line of equivalent proportions as well as bounds about this line, 
which were calculated as the quantiles of the binomial distribution. 
Any families which fell outside these bounds were deemed over-  or 
under- represented at the α = 0.01 level, using a Bonferroni correction 
(Dunn, 1961) to account for multiple comparisons among families. A 
similar scatterplot was generated comparing non- native species rich-
ness of each family pooled among the 11 regions versus the number of 
world- described species per family.

2.4  |  Ordination analysis

A direct ordination, redundancy analysis (RDA) was performed 
to characterise differences among all native and non- native 
assemblages based upon the distribution of species among families 
in each assemblage (Legendre & Legendre, 1998; ter Braak, 1986). 
The scores of each assemblage were plotted for the first two RDA 
axes, with the position of each assemblage in this space providing 
a map of compositional similarities or dissimilarities among 
assemblages. To visualise the relationship of the differences among 
assemblages to the relative dominance of different families, we also 
plotted RDA scores of each family. A permutation test based on 999 
permutations evaluated the effect of native or non- native status and 
of regions, including both the pooled set of all non- native species 

and the world- described species. Neither crossed nor nested effects 
were considered. The RDA and permutation tests were computed 
using the ‘vegan’ package in R (Oksanen et al., 2020). To account 
for the skewed distributions of numbers of species per family in 
the correlation and ordination analyses, species richness of each 
family in each of the assemblages was transformed using a Hellinger 
transformation (Legendre & Gallagher, 2001) as the square root of 
the number of native or non- native species per family divided by the 
total number of native or non- native species per region.

2.5  |  Interception data

As a proxy for propagule pressure for each Lepidoptera family, 
we quantified species richness for each family among Lepidoptera 
species intercepted at sea-  and airports. These data were sourced 
from regions that largely overlapped with the regions investigated 
for the establishments: North America (mainland USA, Canada), 
Hawaii, the western countries of the European and Mediterranean 
Plant Protection Organisation (EPPO), UK, South Africa, Japan, 
South Korea, Australia and New Zealand. The data spanned different 
time frames from the 1990s to the 2010s; see Appendix S2 for more 
details. We are aware that the differences in interception recording 
between EPPO and the other countries may have introduced a bias. 
However, the EPPO interceptions represented only 2% of the entire 
interception dataset, so the effect of this bias on our results would 
be limited. We also acknowledge that inspections are generally not 
conducted randomly; focused inspection of certain commodities 
may introduce bias in summaries of pathway associations. 
Furthermore, inspections do not quantify the degree of infestation. 
Thus, interceptions only detect a small fraction of arrivals, and their 
primary value is for monitoring pathways and compliance checking; 
in most cases, inspection contributes little to directly preventing 
arrival of insects. Data from the different regions were pooled to 
quantify species richness for Lepidoptera families. These border 
interception data are described in detail in Brockerhoff et al. (2014), 
Turner, Brockerhoff, et al. (2021) and Saccaggi et al. (2021).

To investigate whether propagule pressure (proxied by border 
interceptions) can explain invasion disharmonies observed in the 
non- native assemblages, a scatterplot of numbers of intercepted spe-
cies per family against numbers of species in the same family for the 
world assemblage was generated, analogous to that for established 
non- native species. Furthermore, a scatterplot comparing established 
non- native species richness per family (pooled from the 11 regions) 
with numbers of intercepted species per family was generated to 
determine the extent to which variation in interception frequency 
among families explains variation in establishment frequency.

2.6  |  Commodity data

Data on trade commodities associated with Lepidoptera intercepted 
during inspections and identified at least to genus level were derived 
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from the interception data described above. However, the commod-
ity dataset represented a geographical and temporal subset because 
commodities were not recorded for all interceptions; in addition, 
the commodity data from New Zealand came from an earlier period 
(1960– 2000; compare Figures S2 and S3, and Tables S2 and S3 in 
Appendix S1). Data were pooled from interceptions at sea-  and air-
ports of six regions (USA incl. Hawaii; Canada; EPPO; Japan; Australia; 
New Zealand), and span different timeframes from 1950 to the late 
2010s (Appendix S1). Data from each region were pooled to quan-
tify species richness for each Lepidoptera family. The data span 14 
classes of commodities (see Appendix S8), based on the Harmonised 
Commodity Description and Coding System developed by the World 
Customs Organisation (https://www.trade.gov/harmo nized - syste 
m- hs- codes). To limit the impact of stochastic effects, analyses 
were restricted to families with more than 100 commodity records 
(Appendix S8). Plant product commodities of these families were 
itemised to 10 subclasses for a more fine- scaled analysis of pathways 
(Appendix S9). Data collection and processing of commodities data 
are described in detail in Fenn- Moltu et al. (unpublished data).

3  |  RESULTS

3.1  |  Species richness per region

Of the 1178 total records of established non- native Lepidoptera spe-
cies in the 11 regions, 113 records were for 98 intentionally introduced 
species. After exclusion of the records for these species, the dataset 
for analysis contained 1065 non- native species records, representing 
741 species in 59 families. North America had the most recorded non- 
native species, followed by Hawaii and New Zealand (Table 1). The 
fewest non- native species were found in the Ogasawara Islands, South 
Korea, Japan and the Nansei Islands. The highest percentage of non- 
native species among total species was observed for the Galapagos 
Islands, with 19.4%, followed by the Hawaiian Islands (16.6%), and the 
lowest for South Africa (0.4%) and South Korea (0.8%; Table 1).

In all, 16 of the 59 Lepidoptera families with non- native spe-
cies contained 10 or more non- native species in at least one of 
the 11 investigated regions (Table 2), referred to as ‘top- 16 fam-
ilies’ hereafter. The six most widespread non- native species in 
the dataset, which are present in at least eight of the investi-
gated regions, comprise two Pyralidae (Cadra cautella, Plodia in-
terpunctella), two Gelechiidae (Phthorimaea operculella, Sitotroga 
cerealella), one Pieridae (Pieris rapae) and one Plutellidae species 
(Plutella xylostella).

In the heatmap of native families (left panel in Figure 1), the 
relatively species- rich Hawaiian Cosmopterigidae stand out among 
the generally species- poor families, as do the Oecophoridae in 
Australia, where two- thirds of the global species in this family are 
found. Among the non- native assemblages (right panel in Figure 1), 
Pyralidae and Tineidae are generally the most species- rich families 
across most of the regions. Non- native Crambidae were especially 
species- rich on the Galapagos archipelago, where non- native spe-
cies comprise one- third of all Crambidae.

3.2  |  Species– area relationships

We observed a classic log– log linear species– area relationship for 
the total numbers of native (Figure 2a; R2 = 0.8264, p < 0.005) and 
non- native (Figure 2b; R2 = 0.3338, p = 0.06269) species per region. 
This shows that much of the variation in native species richness, but 
not in non- native richness, is attributable to the land area of each 
region. A similar pattern was observed for the two most species- 
rich families of non- native Lepidoptera, Noctuidae and Crambidae 
(Figure 2c– f). Land area generally explains more than twice as much 
of the variation in numbers of native species as variation in num-
bers of non- natives (Appendix S6). Species– area relationships for 
the 14 less species- rich families of the top- 16 families showed the 
same general pattern (Appendix S6: Figure S2) except for non- native 
Geometridae, Nymphalidae, Pterophoridae and Coleophoridae. As 
the numbers of non- native species per family declined, small sample 

Region total non- native %

North America 12,803 300 (14) 2.3

Hawaiian Islands 1136 189 (32) 16.6

Galapagos Islands 360 70 (0) 19.4

Europe 10,669 95 (3) 0.9

South Africa 7935 28 (9) 0.4

South Korea 2793 22 (0) 0.8

Japan 4590 46 (2) 1.0

Nansei Islands 1417 48 (0) 3.4

Ogasawara Isl. 276 11 (0) 4.0

Australia 12,476 106 (43) 0.8

New Zealand 1694 150 (10) 8.9

All regions 741 (98)

World 158,293

TA B L E  1  Numbers of total (second 
column) and non- native (third column) 
Lepidoptera species among investigated 
regions. Numbers in brackets indicate 
the additional number of intentionally 
introduced species, which were 
excluded from the number of non- native 
established species in the analyses. North 
America comprises Canada and the USA, 
but not Mexico; Europe comprises the 
Atlantic and Mediteranean islands as well 
as the European part of Russia; Japan does 
not include the Nansei and Ogasawara 
Islands (both separate regions). Column 
"%": percent of non-native species among 
total  species of region.

https://www.trade.gov/harmonized-system-hs-codes
https://www.trade.gov/harmonized-system-hs-codes
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sizes created proportionally greater stochastic influences and erratic 
species- area relationships in several families.

3.3  |  Proportional representation in establishments

Pyralidae were over- represented in relation to what was expected 
according to native species in the non- native assemblages of five 
of the 11 regions, and Tineidae were over- represented in seven 

(Figure 3). Geometridae were under- represented in the non- native 
assemblages of four regions.

In the scatterplot of the pooled data from all 11 regions 
(Figure 4a), six of the 59 families containing non- native species were 
outside the proportions expected from their frequencies in the 
world fauna: Geometridae and Erebidae were under- represented, 
whereas Crambidae, Gracillariidae, Pyralidae and Tineidae were 
over- represented in the non- native assemblage.

3.4  |  Ordination analysis

Ordination analysis (RDA; Figure 5) showed that the family- level 
composition of non- native assemblages is strongly distinct from 
that of native assemblages (F = 8.2185, p = 0.001). This difference 
is evident in the general positioning of non- native (red circles in 
Figure 5a) and native (blue triangles in Figure 5a) assemblages on 
opposite sides of the ordination space, primarily defined by the first 
(RDA1) axis. Region, however, had no significant effect (F = 1.1186, 
p = 0.308), since family- level composition of non- native and native 
assemblages from the same region was not more similar to each 
other than to other assemblages. Although native assemblages were 
of a similar composition in geographically nearby regions (especially 
Australia and New Zealand), the non- native assemblages were gen-
erally not (Figure 5a). Loadings for the first RDA axis (Figure 5b), 
which separates native and non- native assemblages (Figure 5a), indi-
cated that native assemblages were associated with relatively large 
numbers of Geometridae. Non- native assemblages, on the other 
hand, were associated with relatively high numbers of Pyralidae and 
Tineidae. The second axis (RDA2 in Figure 5b) was positively re-
lated to the fraction of Erebidae, and negatively associated with the 
fraction of Oecophoridae. The loadings for those two families were 

Lepidoptera family non- native world %

Noctuidae 83 (6) 11,772 0.7

Crambidae 83 (12) 10,441 0.8

Tortricidae 70 (12) 10,387 0.7

Erebidae 63 (7) 24,569 0.3

Pyralidae 57 (10) 6200 0.9

Tineidae 47 (0) 2393 2.0

Gelechiidae 37 (5) 4700 0.8

Geometridae 27 (3) 23,002 0.1

Gracillariidae 26 (5) 1866 1.4

Oecophoridae 25 (0) 3400 0.7

Nymphalidae 15 (2) 6152 0.2

Pterophoridae 13 (5) 1318 1.0

Depressariidae 12 (3) 2300 0.5

Cosmopterigidae 11 (0) 1730 0.6

Coleophoridae 11 (2) 1400 0.8

Lycaenidae 11 (2) 5201 0.2

TA B L E  2  Summary of the 16 
Lepidoptera families with 10 or more 
non- native species established in at 
least one of the 11 investigated regions. 
Column "non-native": number of non-
native species; "world": number of world 
species; "%": percent of non-native 
species among world species. Numbers in 
brackets indicate the additional numbers 
of intentionally introduced species

F I G U R E  1  Heatmap of number of species within each family for 
native (left panel) and non- native (right panel) Lepidoptera for each 
region. Values are calculated as √(number of native or non- native 
species in a family per region/total number of Lepidoptera per 
region)
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isolated, indicating that the relative species richness of Erebidae and 
Oecophoridae does not covary closely with those of other families.

3.5  |  Proportional representations in interceptions

The interception dataset comprised 113,185 records from 52 
Lepidoptera families (Appendix S7). Five occurred at frequen-
cies greater than expected based on their frequencies in the world 
fauna (Figure 4b): Crambidae, Noctuidae, Papilionidae, Pyralidae and 
Sphingidae. In contrast, Geometridae, Hesperiidae, Lycaenidae and 
Oecophoridae were under- represented, that is, they were considera-
bly less frequently intercepted than expected from their global species 
richness. The comparison of established non- natives with intercepted 
species (Figure 4c) showed that the macromoth families Erebidae, 
Noctuidae, Saturniidae and Sphingidae were under- represented, 
whereas six micromoth families (Blastobasidae, Cosmopterigidae, 
Gelechiidae, Gracillariidae, Oecophoridae and Tineidae) were under- 
represented in the interceptions (and thus over- represented in the non- 
natives), that is, there were substantially more established non- native 
species in these families than their interceptions would suggest.

3.6  |  Commodities

Interceptions of 43 families were recorded in association with spe-
cific commodities (Appendix S8), and 19 of these families had 100 or 

more interceptions. The majority of interceptions in these 19 families 
was from plant products (average 82.5%), followed by wood products 
(6.32%), machinery and electrical commodities (4.65%), stone and 
glass commodities (1.9%) and animal products (1.35%). The families 
with the highest proportion of interceptions on wood products were 
Geometridae, Cossidae and Nolidae (Figure 6a). Sphingidae stand out 
with a small proportion (27.3%) of reports from plant products, but a 
large proportion (46%) from machinery and electrical commodities— 
potentially an artefact of the small number of 198 records. Within the 
commodity class of plant products (Appendix S9), three commodities 
dominate: live plants/cut flowers, vegetables and fruit/nuts (Figure 6b).

4  |  DISCUSSION

We found 59 families of Lepidoptera (out of 138 families in total) 
with at least one non- native species established among the 11 inves-
tigated regions. The four families with the greatest numbers of es-
tablished non- native species (Noctuidae, Crambidae, Tortricidae and 
Erebidae) are also among the five globally most species- rich families. 
Altogether, these 59 families comprise 741 non- native Lepidoptera 
species. This number is considerably smaller than the 1967 non- 
native beetle (Coleoptera) species reported in a similar study that 
focused on the same regions except for South Africa (Liebhold 
et al., 2021). However, in these 10 regions, non- native Lepidoptera 
species represent 0.47% of the 158,293 global species— remarkably 
similar to the 0.51% of species of beetles that have established in 

F I G U R E  2  Log– log species– area relationships in the 11 investigated regions for (a) all native Lepidoptera species, (b) all non- native 
Lepidoptera species, (c), native Noctuidae, (d) non- native Noctuidae, (e) native Crambidae, (f) non- native Crambidae
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at least one of the 10 regions investigated in Liebhold et al. (2021). 
Generally, however, Lepidoptera tend to be less well represented 
among alien assemblages as compared to other insect orders 
(Liebhold et al., 2016).

The observation that numbers of species increase with the area 
they inhabit— the species– area relationship— is perhaps the most 
general pattern in biogeography (Lomolino, 2000). Our results 
show that non- native Lepidoptera assemblages tend to follow this 
log– log linear species– area relationship, although land area explains 
less of the variation in non- native species numbers than it does for 
native assemblages (Figure 2; Figure S6). Furthermore, the slopes 
of species– area relationships for non- native assemblages were 
generally half that of the native assemblages, often due to a high 
ratio of non- native to native species for small island regions versus 
a generally low ratio for large areas like North America, Australia 
and Europe (Table 1). A strong connection between land area and 
species richness may not entirely be a direct causal relationship: 
Liebhold et al. (2018) found that land area directly influenced native 
and non- native plant diversity, which, in turn, influenced the species 
richness of native and non- native insects.

In three island regions (Galapagos, Hawaii and New Zealand), non- 
native species make up 9%– 20% of the region's total Lepidoptera fauna 
(Table 1). All three regions have experienced a strong influx of non- 
native flora and fauna in the past, shifting the composition of the local 
biodiversity. These patterns reflect the general tendency of oceanic 
islands to be more frequently invaded, as seen in various plant and ani-
mal groups (Blackburn et al., 2016; Moser et al., 2018). In these groups, 
invading species also tend to have greater impacts on native commu-
nities on islands compared to mainland environments, but it remains to 
be determined if this is a generalisable trend for Lepidoptera invasions.

The general concordance in the richness of families in non- native 
assemblages compared to native assemblages in a region (Figures 3 
and 4a) may reflect the availability of niches and the lack of compet-
itive exclusion. But the concordance of richness of families in non- 
native assemblages with that of the world fauna may also reflect the 
availability of species in source species pools. Differentiating these 
two influences is likely difficult.

In addition to differences in the numbers of non- native Lepidoptera 
species among regions, we found differences in the composition of na-
tive and non- native assemblages reflecting invasion disharmony. The 

F I G U R E  3  Scatterplots of the numbers of non- native species per family (y- axis) versus numbers of native species per family (x- axis) for 
the 11 different regions. Red circles: butterflies, green triangles: macromoths, blue squares: micromoths. For Hawaii, Nymphalidae fall on the 
same point and obscure the Pterophoridae. Black line describes expected non- native species numbers per family if in same proportions as in 
the described species of that region; grey shading indicates the α = 0.01 level (under a binomial distribution and with a Bonferroni correction 
to account for the number of families compared), with labelled families outside of this area considered over-  or under- represented
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two families most over- represented in non- native assemblages were 
the Pyralidae, comprising many pests of stored food products, and the 
detritivorous Tineidae. Furthermore, we found non- native Lepidoptera 
to be dominated by micromoth families; only five of the top 16 fami-
lies were macromoths and butterflies. Generally, micromoth families 
were over- represented in the non- native assemblages of establish-
ments among the 11 investigated regions (Figure 3), and the same 
was true for the total numbers of established non- native species per 

family pooled among all 11 regions (Figure 4a). Hawaii is an exception, 
featuring two families of macromoths (Noctuidae and Erebidae) and 
one family of butterflies (Nymphalidae) among the over- represented 
families. At least the over- representation of non- native Nymphalidae 
in Hawaii can be explained by a low number of native nymphalids 
(Figure 1). Similarly, the under- representation of non- native Crambidae 
in Hawaii and New Zealand, of Cosmopterigidae in Hawaii, of Erebidae 
in Galapagos and of Oecophoridae in Australia, can be explained by the 

F I G U R E  4  Scatterplots of (a) total numbers of established non- native species per family pooled among all 11 regions (y- axis) versus 
global numbers of species per family (x- axis), for all 59 families comprising non- native species; (b) intercepted species per family versus 
global numbers of species per family; and (c) established non- native species per family versus intercepted species per family. Red circles: 
butterflies, green triangles: macromoths, blue squares: micromoths; black line describes expected non- native species numbers per family if 
in same proportions as in the globally described species; grey shading indicates the α = 0.01 level (under a binomial distribution and with a 
Bonferroni correction to account for the number of families compared), with labelled families outside of this area considered over-  or under- 
represented

F I G U R E  5  Results of RDA ordination 
on numbers of species per family. (a) 
Location of each region in space defined 
by the first two RDA axes; blue triangles 
are native assemblages, red dots are non- 
native assemblages; ‘sum_regions’ refers 
to the sum of unique non- native species 
pooled from the 11 regions. (b) Loadings 
for the 16 Lepidoptera families with at 
least 10 established species; red circles: 
butterflies, green triangles: macromoths, 
blue squares: micromoths
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proportionally large native species radiations in these regions, espe-
cially in the case of Hawaiian cosmopterigids (Figure 1). For the macro-
moth family Geometridae, no such pattern is apparent, suggesting that 
this family is indeed under- represented in the non- native assemblages 
of four of the 11 regions. Our findings of greater establishment suc-
cess of micromoth families are consistent with those of Lawton and 
Brown (1986) for the establishment success of different insect orders 
in Great Britain: the smaller the body size, the higher the probability of 
establishment.

Four micromoth families (Crambidae, Gracillariidae, Pyralidae 
and Tineidae) stand out as more successful in non- native fauna than 
expected based on their global species richness. Their establishment 
success is likely attributable to their generally small body size, and to 
their larval life strategies: polyphagy in certain groups of Crambidae, 
fungi-  and detritivory (including feeding on stored food products) 
in Pyralidae and Tineidae, and concealed (often internal) feeding in 
Gracillariidae and Tineidae. These traits either promote their asso-
ciation with imported goods, impede detection during border in-
spections, facilitate reproduction and subsequent establishment of 
invading populations or act in combination.

Surprisingly, the two most species- rich families of Lepidoptera, 
Erebidae and Geometridae, are generally less successful invad-
ers. Only 0.3% and 0.1% of their world species are among the non- 
native species present in the 11 investigated regions (Table 2). Many 
Geometridae species are host specialists, potentially limiting their 
ability to locate host plants in non- native areas and to successfully 
establish. Furthermore, Geometridae comprise by far the largest 
number of species among Lepidoptera (apart from Psychidae) with 
some sort of wing reduction (Sattler, 1991). The adults are gener-
ally weak flyers, and in numerous species the females are flightless, 
making this family one of the most philopatric groups among larger 
moths. After arrival in a non- native region, this might impede local 
spread but promote establishment of viable populations (Robinet & 
Liebhold, 2009; Shaw & Kokko, 2015). In the Erebidae, the majority 
of species established in the 11 regions feed on more than one host 
plant family, and several species are extremely polyphagous: Achaea 
janata (subfamily Erebinae) feeds on 31 families of plants, Lymantria 

dispar (Lymantriinae) on 38 families, and Hyphantria cunea (Arctiinae) 
on 43 families (Robinson et al., 2010). Analysing Erebidae at the sub-
family level, especially for the species- rich Arctiinae and Lymantriinae, 
might provide a more detailed picture of establishment success within 
these subfamilies, but the small numbers of non- native species within 
each subfamily precludes a meaningful analysis here.

We used the most up- to- date and comprehensive phylogenetic 
classification system available; nonetheless, phylogenetic research 
in large groups such as Geometridae, Gelechiidae, Noctuidae and 
Erebidae is ongoing, with the circumscriptions of many families in 
flux. For example, considering in our analyses Pyralidae in the pre- 
Minet (1982) sense (i.e. including Crambidae), or Noctuidae as cir-
cumscribed before the recent changes in Noctuoidea systematics 
(Zahiri et al., 2010, 2011, 2012, 2013), would have led to considerably 
different results, where Pyralidae sensu lato (including Crambidae) 
with altogether 140 species would constitute the largest family of 
non- native Lepidoptera; and Erebidae, without the inclusion of the 
former Lymantriidae and Arctiidae, would comprise a lower number 
of non- native species. The classification of Lepidoptera used here 
thus reflects only a temporary state that may change as phylogenetic 
relationships are researched in more detail. Future studies on lower 
systematic levels (subfamilies, tribes) may uncover a more detailed 
picture of establishment success among non- native Lepidoptera.

The RDA redundancy analysis yielded no significant effect of re-
gion, indicating that native and non- native assemblages from the same 
regions are not significantly more similar to each other than to other 
assemblages. Furthermore, non- native and native assemblages were 
completely distinct from each other at the family level in the RDA ordi-
nation space (Figure 5a), indicating that the composition of non- native 
assemblages is driven by different factors compared to the drivers 
of native species richness. Similar results were observed by Liebhold 
et al. (2016) for insect assemblages at the order level, and by Liebhold 
et al. (2021) for beetle assemblages at the family level: in both cases, 
the composition of native assemblages was distinct from non- native 
assemblages. The processes determining the composition of native 
assemblages, which formed through long- term evolutionary radia-
tion, and non- native assemblages are very different and likely explain 

F I G U R E  6  Trade commodities from which Lepidoptera were intercepted. (a) Commodity classes and their proportions of the most 
commonly intercepted Lepidoptera families (n ≥ 100 interceptions). (b) Commodities within the plant products commodity class for the 
families in (a). Numbers in brackets behind families indicate numbers of interceptions
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their distinctness. Much like island disharmony, invasion disharmony 
can be considered to result from a filtering process that occurs when 
species are ‘moved’ from the pool of native species in various world 
regions, arrive and successfully establish. During this process, some 
species are more likely to become associated with commodities that 
are transported internationally; life- history traits of insects (e.g. their 
presence in grain or other material that is traded in high volumes) as 
well as their general abundance may influence the probability that 
they arrive in areas outside of their native range (Gippet et al., 2019; 
Meurisse et al., 2019). Other traits, such as the widespread use of 
their host plants, may affect the likelihood of establishment following 
arrival. Together, these traits can form ‘invasion syndromes’ (Novoa 
et al., 2020), which filter the pool of potential invaders resulting in 
some groups of species to be either over-  or under- represented in 
non- native assemblages— factors that depend on the species' life- 
history traits and that vary among insect orders and families (Kiritani 
& Yamamura, 2003; Liebhold et al., 2016; Meurisse et al., 2019).

The over- representation of Noctuidae, Crambidae, Pyralidae, 
Sphingidae and Papilionidae among intercepted groups (Figure 4b) 
may reflect, at least in part, high arrival rates (propagule pressure) 
linked to behaviours that cause them to become associated with 
specific transport pathways. Crambidae and Pyralidae are over- 
represented among both non- natives (Figure 4a) and intercepted 
species (Figure 4b). High propagule pressure (as high numbers of in-
terceptions) may thus explain, at least in part, their establishment suc-
cess. However, differences in the detectability of immature life stages 
may introduce biases in interception frequencies; large eggs and lar-
vae in groups such as swallowtail butterflies (Papilionidae) and hawk-
moths (Sphingidae) are easier to notice than those of micromoth with 
smaller eggs and more cryptic caterpillars. A family- level comparison 
of established with intercepted non- native species (Figure 4c) sup-
ports this: six micromoth families are more successful at establishing 
than their interception numbers would suggest, indicating that they 
might be overlooked more often in interceptions. Among these, the 
larvae of Cosmopterigidae, Gelechiidae and Gracillariidae are mainly 
leaf-  or fruit- miners, and those of Blastobasidae, Oecophoridae and 
Tineidae are generally fungivores and detritivores. Their concealed 
feeding likely impedes their detection during inspections, and espe-
cially when present in their egg stage, many of the species in these 
families may be overlooked during inspections. Body size thus ap-
pears to affect the detectability of Lepidoptera in interceptions. This 
could explain why Tineidae, the most frequently over- represented 
family in the establishments among the 11 investigated regions, was 
not over- represented in interceptions. However, we currently cannot 
distinguish whether this observation is due to their below- average 
frequency of detection in inspections, or whether high propagule 
pressure may not be a strong factor driving the establishment success 
of Tineidae, and potentially other Lepidoptera groups.

Since we did not attempt to characterise patterns of establish-
ment through time, time lags between establishment and discovery 
are unlikely to impact our analyses. However, many of the species 
currently established may have arrived many years prior to the pe-
riod from which our interception data were recorded, and this may 

introduce some artefactual differences when comparing patterns. 
On the other hand, Nahrung and Carnegie (2021) found that non- 
native forest insect species that established in Australia in early 
years were generally still intercepted in high numbers long after 
their establishment, indicating that contemporaneous interceptions 
are still good indicators for previous establishments.

The larvae of the vast majority of butterflies and moths are herbiv-
orous, and Lepidoptera are thought to have radiated in tight connec-
tion with the diversification of angiosperms (Kawahara et al., 2019). 
It is therefore not surprising that we find the majority of Lepidoptera 
to be intercepted from plant products, although this observation 
might be somewhat biased, as plant products, and among them es-
pecially live plants, fruits and vegetables, tend to be one of the most 
intensively inspected commodities (Eschen et al., 2015; Fenn- Moltu 
et al., unpublished data). Nevertheless, the notion that plants and plant 
products are the dominant invasion pathway for Lepidoptera is con-
sistent with other studies that indicate plant imports as the dominant 
pathway for introduction of foliage- feeding insects (Kenis et al., 2007; 
Kiritani & Yamamura, 2003; Liebhold et al., 2012). A few families (e.g. 
Erebidae, Cossidae, Sphingidae) were frequently associated with non- 
plant products such as machinery/electrical commodities, mineral 
products and stone/glass commodities (Figure 6a). These associa-
tions most likely reflect the tendency of species in these families to 
be transported in the ‘hitchhiking’ pathway— that is, transported with 
inanimate objects (Gippet et al., 2019; Kiritani & Yamamura, 2003; 
Meurisse et al., 2019; Toy & Newfield, 2010). The hitchhiking pathway 
may be particularly common for species that have behaviours that as-
sociate certain life stages (eggs, pupae) with non- host material— for ex-
ample, Lymantria dispar eggs are often laid on non- host materials such 
as vehicles, machinery and shipping containers (Paini et al., 2018).

Generalists appear to be more successful invaders than species with 
a narrow food spectrum, especially on islands, where detritivores and 
stored food pests are frequently over- represented. There would thus be 
benefits from biosecurity measures that target exclusion of such gen-
eralist detritivores. However, micromoths, often with small, concealed- 
feeding larvae, may be easily overlooked during border inspections and 
thus may be difficult targets for border biosecurity actions.
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